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In spite of the large variety of existing transport processes they all have one funda- 
mental property in common: these processes strive to neutralize external actions that take 
a system out of the equilibrium state. Any physical system has some inertia, related to in- 
ternal processes specific to the system, which are activated with breakdown of equilibrium 
and which are characterized by their own internal variables. The approach of the system to 
equilibrium, which results in the observed transport processes, can be viewed as a collection 
of relaxation processes for these internal variables. 

The internal variables (relaxation parameters) can include macroscopic parameters (tem- 
perature of some subsystem, concentrations of different substances, coordinates of chemical 
reactions, order parameters, etc.), as well as variables describing microscopic state of 
separate structural elements: molecules, atoms, ions, etc. Microstructural relaxation para- 
meters usually include, for example, the energies of rotational and vibrational degrees of 
freedom of atoms and molecules. 

If the time scales of the external actions are of the same order of magnitu4e as the 
relaxation times, then the internal nonequilibrium processes can have a significant effect 
on the macroscopic energy, mass, and momentum transport processes both between the surround- 
ing medium and the system and within the system itself. 

Since in many practically important situations the evolution of internal variables can- 
not be directly observed, it is important to develop a theory of relaxation processes that 
gives a phenomenological relation between the characteristics of the external perturbation 
and the response of the system and the internal processes occurring in the system. 

There are two basic approaches to the description of relaxation phenomena and processes. 
One of them, based on the use of the corresponding kinetics equations [I, 2], requires a de- 
tailed knowledge of the processes at the molecular level and for this reason its application 
to systems of different classes is closely related to the development of methods specific to 
each class. The second approach is based on the methods of thermodynamics of irreversible 
processes, which are fundamentally identical for different types of systems [I, 3-10] and, 
therefore, has a great degree of generality. The first thermodynamic method was applied to 
problems of acoustic relaxation by Mandel'shtam and Leontovich [7]. The method was further 
developed by meixner etal. [3, 5, 6, 11-13]. The present state of the problem is described 
in [i, 4-10], which also contain a large number of references to examples of applications of 
=he method to specific problems. 

In this review we shall limit our analysis only to the relaxation formalism of nonequili- 
brium thermodynamics, and we shall briefly analyze its relation to the methods of the theory 
of dynamic systems [14]. For a thermodynamic interpretation of the results obtained with the 
help of this theory, it is entirely sufficient to examine the theory as a convenient approxi- 
mate method for describing macroscopic processes corresponding to the thermodynamic behavior 

of the system [15]. 

As far as the kinetic theory of molecular relaxation processes is concerned, the present 
state of the problem is described in [i]. In addition, the foundations of the kinetics and 
thermodynamic theories of molecular relaxation in gases and liquids, as well as data on re- 
laxation of the translational, rotational, and vibrational degree of freedom, on relaxation 
with dissociation, ionization, electronic excitation, and chemical transformations in gaseous 
mixtsres are presented in [i, 2, 7, 16-25]. 

Kinetic methods permit finding the relaxation times, which can then be used in the thermo- 

dynamic theory. 
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Specific examples of the application of the relaxation formalism to thermodynamics of 
irreversible processes encompass a very wide range of problems from different branches of 
mechanics, physics, and chemistry. A very lary number of papers is devoted to problems of 
acoustical relaxation: powerful modern methods for studying the structure and properties of 
substances in different aggregate states are based on the study of the characteristics of 
propagation and absorption of ultrasound [i, 7, 8]. We also call attention to [9, i0, 26-31], 
which are concerned with the study of dislocation processes, thermo-, magneto-, and visco- 
elastic relaxation, as well as relaxation due to first- and second-order phase transitions 
in solids (including polymers, structural, and other materials with a considerably nonuni- 
form structure, etc.). 

Many attempts at using the thermodynamic formalism to construct models in control theory, 
economics, biology, and sociology have been made in recent years (see, for example, [32-35]). 

Aside from a brief exposition of the thermodynamic theory of relaxation processes, we 
shall examine various applications of these methods to problems of physicochemical mechanics 
and transport processes in single-phase and dispersed media. For the problems indicated, 
molecular relaxation processes, dissocation processes, phase transformations, as well as 
chemical reactions and fluctuation processes are of greatest interest. There are a large 
number of papers and monographs concerning these problems so that it is impossible to describe 
all of them in detail in a brief review. For this reason, we shall restrict out attention 
to a schematic description of the important approaches to the solution of these problems, 
examining as examples the work involving a purely thermodynamic approach. In addition, we 
shall point out the papers in which the effect of relaxation processes on the behavior of 
different systems is examined~)=o make it easier for the interested reader to penetrate this 
complex and rapidly developing field. 

We shall examine the simplest system whose behavior is determined by two dynamic vari- 
ables: an external controlling action x(t) and a response y(t). In so doing, we shall assume 
that a natural internal process ~(t) occurs in the system. 

In specific situations, the orders of magnitude of the characteristic times of the pro- 
cesses y(t) and ~(t) are often different. The evolution of the system in the phase space of 
the dynamic variables can then be described by a system of autonomous differential equations 
containing a small parameter r 

eDiu = f(x, U, [), De[ : h(x, F, [), (1) 

where D t is the operator of differentiation with respect r time, while f and h are some func- 
tions, which in general are nonlinear. 

Integration of the system (I) is usually a very complicated problem. For this reason, 
approximate and qualitative methods for studying the trajectories of dynamic systems in phase 
space are important and, in particular, the theory of bifurcations, whose foundations were 
developed by A. A. Andronov et el. [14]. For system (i), asymptotic expansions of the solu- 
tions in powers of e with an degree of accuracy can be constructed. For a higher order sys- 
tem (when x, y, and ~ are collections of several quantities of a similar nature), such expan- 
sions are available only with accuracy up to e; the problem of obtaining the next terms in 
the expansions has not yet been solved [36, 37]. The construction of these expansions is 
based on a theorem by A. N. Tikhonov [36-39], according to which, under certain conditions, 
the solution of the starting system (I) approaches with E § 0 the solution of the degenerate 
system 

f(x, y, [ ) = 0 ,  Dt[ h(x, y, D, (2) 

in which the second equation describes the evolution of the "slow" varia~e [, while the 
first, "associated" equation is a consequence of the fact that there exists a "fast" variable 
y. To find an approximate solution of (i), y must be found as a function of X and ~ from 
the associated equation and the function obtained must be used in the second equation in (2). 

The procedure for separating variables into fast and slow variables was widely used in 
solving problems of chemical kinetics and statistical mechanics [40-42] even before the formu- 
lation of A. N. Tikhonov's theorem. The method based on it will, evidently, be all the more 
accurate the larger =he difference between the characteristic times. The law governing the 
variation of the controlling action x(t) must in all cases be determined from several inde- 
pendent considerations. 
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The behavior of the system for which Eqs. (2) are approximately valid can be interpreted 
qualitatively as follows. The image point of the system in phase space rapidly moves along 
the line r =const onto the surface f(x, y, r = 0, correspoding to stationary states rela- 
tive to fast motions, and then moves slowly along the surface. With a number of limitations 
on the forms of the functions f and h, the mathematical model based on (I) admits a direct 
thermodynamic interpretation, which permits using an effective formalism of classical and non- 
equilibrium thermodynamics for solving problems [32]. This is possible not only for problems 
of a physical nature, but also for problems based on purely formal analogies (for example, 
in control theory [32] and in economics [33, 34]). 

The conditions for the autonomous systems (i) to be stationary, f = 0 and h = 0, deter- 
mine in a particular case the thermodynamically equilibrium states of the system, for whose 
description it is sufficient to give only some of the thermodynamic quantities, since the 
remaining quantitities can be obtained from the equations of state. With deviations from 
equilibrium, the latter functional relations break down, but they can be formally restored 
by defining additional internal variables characterizing such a deviation. This approach was 
first used by Leontonovich [43] and it is presently used in solving a number of problems in 
nonequilibrium thermodynamics. Thus the dynamic variables y and x can be interpreted as 
coupled thermodynamic quantities, while ~ can be interpreted as additional internal para- 
meters. The thermodynamic interpretation of states f(x, y, ~) = 0 and h(x, y, ~) = 0 is 
possible only if f and h form an involution [32]. The equations themselves can in general 
be viewed as generalized equations of state, which are equilibrium in the usual sense of the 
word, i.e., if ~ = 0. 

We shall examine the linear response by of system (i) to an external perturbation Ax 
assuming that ~(t) is a slow process, while y(t) is a fast process. Then, the system (2) is 
valid. From the first equation in (2) it follows that y = y(x, ~) and, in addition, x and 

are viewed here as independent variables. We examine the second equation in (2) in the 
relaxation approximation, assuming that h depends on the affinity A of the relaxation process. 
Then, expanding h(A) near a stationary state in a Taylor series, we obtain the following dy- 
namic equation for the ;~nternal variable: 

D t ~ = - - L ( A - - A S t ) ,  L I #h ] s~. (3) 
k a A J  

Linearizing with respect to Ax, A~, we obtain from (2) and (3) 

Ay = c ~ x  + QA~, DtA~ = - -  (PAx + RA~), (4)i 

where we introduced the notation 

c ~ = (@lax h, Q =(@lOg),, P = L (OA/Ox h, R = L (OAIO~)=. (5) 

Here the quantity A -- A st plays the role of a thermodynamic force giving rise to the relaxa- 
tion process and L is a phenomenological coefficient. The derivatives in (5) are calculated 
at the point of phase space corresponding to a stationary state of the system, while the 
quantities by, Ax, and A~ describe the deviation from this state. 

Eliminating the quantity At from (4), we obtain an operator relation between the response 
by and the pertrubation Ax, independent of Ar 

Ay = fax, f= c~ -- Q (R + Dt)-'P. (6) 

The differential operator in (6) can be easily reduced to an integral operator, which permits 
writing down the solution of (6) in an explicit form [4]. 

The entire preceding discussion and the form in which relations (1)-(6) are written do 
not change if there are many variables y, x, and ~. In this case, it is sufficient only to 
examine these variables as well as the quantity A as vectors, while L, c ~, Q, P, R, and R must 
be viewed as matrices. 

The matrix of phenomenological coefficients L is not necessarily symmetrical, i.e., its 
elements may not satisfy the Onsager reciprocity relations, since under stationary conditions 
far from equilibrium, the principle of local equilibrium may not be satisfied. However, as 
Glansdorf and Prigogine showed [44], for many important processes (for example, in chemical 
kinetics), this principle is still satisfied. Then, in studying relaxation to a stationary 
state of the system, it is possible to apply successfully the formalism of relaxation thermo- 
dynamics, devloped for states close to equilibrium. 
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Characteristics of a system describing its reaction to instantaneous changes of state 
and to slow displacements from the stationary or equilibrium state are quite common. In 
accordance with the separation of motions into fast and slow motions, =he fast motions cor- 
respond to "frozen" internal processes ($ = const), characterized by the quantity (or matrix) 
c ~. On the other hand, it is evident from (3) that the condition A = A st corresponds to a 
stationary equilibrium (A = 0) state of the system, in which the response to an external per- 
turbation corresponds to a slow stationary or reversible equilibrium process. In the las~ 
case, time does no~ enter explicity into the equation describing the evolution of the system 
and instead of (4) we have 

V = y (x ,  A), AV T c+Ax + QAAA' e+ = (8V/Sx~, QA = (@/SA), .  ( 7 )  

From (4)-(7), using the properties of dacobians of the transformations or well-known 
relations between thermodynamic derivatives [2, 45], the generalized thermodynamic suscepti- 
bility 

C + __ C ~ 

= (o~ /ox )  = c ~ + ( 8 )  
t + z~D~ 

can be expressed in terms of the characteristics of two limiting staues of the system: the 
instantaneous (or frozen) c ~ and stationary (or equilibrium) c + and the relaxation time TX. 

The detailed procedure for obtaining the susceptibility in matrix form is described in 
[2, 4, 5] and, in addition, for relaxation to an equilibrium state, it is possible to use, 
as usual, the entropy and the thermodynamic potential of the system to calculate the matrix 
elements. In working with the operator Dr, it can be formally viewed as a number or as a 
parameter in the Laplace and Fourier transformations. 

In [46], the variables were separated into fast and slow variables with the help of 
linear phenomenological Onsager equations 

DtU = - -  Mvvy - -  M ~ ,  Ot~ = - -  M ~ y  - -  M ~ $  ( 9 )  

(this system can formally be obtained by linearizing (I)). If the ratio of the relaxation 
times Ty/T~ = e, then ~ and My. are of the order of ~-~ relative to M~ and M~y. It follows iyy 
from here that in general the fast and slow variables are quite strongly coupled. This coupl- 
ing can be greatly decreased with the help of special unimodular transformations of the quan- 
tities y, ~. 

The formalism developed in [46] can be applied Eo =he analysis of nhe behavior of ~em- 
poral correlation functions of nonequilibrium macroscopic fluctuations, whose evolution is 
described by equations of the type (9)[47] and to the analysis of the Fokker=Pianck equation. 
In analyzing Brownian motion, the separation into fast and slow variables can be realized be- 
cause the change in the velocity of the Brownian particles occurs much more rapidly than the 
change in their positions. As a result, the solution of the Fokker--Planck equation is ex- 
pressed as a series with respect to the eigenfunctions of the operator, in which the nonsta- 
tionariness due to fast motions is neglected. The lowest eigenvalue of this operator corre- 
sponds =o the equilibrium distribution function in velocity space. 

We shall briefly point out some of the recently discussed generalizations of the theory 
of relaxation processes described above. In [48], the concept of internal variables is gen- 
erally not used and the formal apparatus is constructed by analogy to the theory of electrical 
changes in the system that are linearly related to the parameters describing the state of =he 
system, while the type of coupling is determined by the structure of the system. 

In [49], the equations of nonlinear relaxation are obtained in the fol!owing form using 
the me=hods of statistical mechanics: 

Dt[ ~ = - -  L~jA; - -  LijkAjAk. ( 1 0 )  

In [50], a variational principle for linear irreversible processes is formulated. The 
solutions of the Euler--Lagrange equations of the variational problem describe both the char- 
acteristic relaxation and the "antirelaxation," which realizes the choice of dynamic system, 
perturbed by the random forces, and the most probable trajectory in phase space. The behavior 
of a Brusselator is examined as an example [15]. 

Finally, it is sometimes convenient to introduce some internal configuration space of the 
variably y [5, 51] and to assume =hat the variable ~ is a continuous function of y. For ex- 
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ample, the quantity ~(y) can be the particle density in a state characterized by a definite 
value of y, while y can be an angle determining the orientation of molecules, velocity of a 
Brownian particle, etc. The variable ~ satisfies the equation of continuity 

O~/Ot = -- Vv~, (II) 

and, in addition, some phenomenological law must be indicated for the flux T~. Equation (ii) 
naturally supplements the system of equations of conservation of mass, momentum, and energy. 
The expression for the entropy in this case contains an additional term, corresponding to 
diffusion in phase space. The application of the method in [5, 51] is illustrated for pro- 
blems in chemical kinetics and Brownian motion. 

In [Ii], the concept of internal variables is used to analyze and solve approximately 
the Louiville equation. 

The dynamic equation (3) is often represented in the form 

D~=-- 1 [~(t)_~o],  (12) 
~y 

where Eo is the equilibrium value of the relaxation parameter. The relaxation time Zxy is 
related to the affinity of the relaxation process [2, 5, 6]: 

%y = -- [ L (aA/aD.y] -i (13) 

This expression and the known thermodynamic relations for A [2, 5, 6] permit using the 
entropy and thermodynamic potential in calculating the relaxation times. 

All phenomenological methods for describing relaxation processes thus require an inde- 
pendent determination of either the phenomenological coefficients or relaxation times or the 
rate constants. A convenient practical technique for determining relaxation times from the 
inflection points and extreme on the experimental curves of different quantities as a function 
of In t was proposed in [52]. 

Chemical relaxation and fluctuations are classical examples of processes whose descrip- 
tion is based on the relaxation equation (12). 

For small deviations of the reaction coordinate ~ from the equilibrium value ~o, when 
the relation A(~o)can be represented in the form A = (~A/~)(~ -- ~o), the reaction can be 
viewed as a relaxation process. In this case, the reaction rate satisfies Eq. (12). The 
quantity A is usually described by a relation expressing it both as a function of the chemical 
potentials of the substances and the stoichiometric coefficients, while the phenomenological 
coefficients are determined from the mass action law. For example, for a molecular reaction 
of the type A--~*-~-B, occurring under isochoric-isothermal conditions [2], the relaxation time 

, (14) 

where k is the reaction rate constant; C A and C B are concentrations. 

The theory of chemical relaxation is described in detail in [2, 5, 6, 53, and 54]. In 
particular, in [54], for complex chemically reacting systems, methods for simplifying the 
initial problem, based on the analysis of a hierarchy of relaxationtimes and on separation 
of fast and slow processes, are proposed and some interesting recommendations are given for 
analyzing even more complicated biophysical and biochemical systems. 

In the study of fluctuations in macroscopic systems, as well as in the analysis of re- 
laxation processes, the same basic approaches are used: kinetic and thermodynamic. The 
thermodynamic theory of fluctuations in an equilibrium state is examined in detail in [5, 47]. 
Damping of fluctuations averaged over the equilibrium distribution satisfies linear equations 
of the type (9) or (12), which was checked experimentally. Based on the linear equations, it 
is easy to find the laws governing the changes in the temporal correlation functions [46, 47]. 

On the other hand, the evolution of fluctuations in time can be viewed as the realization 
of some random process, which under certain conditions, can be described with the help of the 
Langevln or Fokker-Planck equations. Fluctuations have been studied in very many papers, in 
particular in [55-63], from this point of view. 
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A very important result of the theory of fluctuations is the well-known fluctuation-dis- 
sipation theorem, which establishes a relation between the generalized susceptibility ~ and 
the matrix of the spectral density of the correlation function [5, 47J. A large number of 
applications of the method of correlation functions to different problems is examined in [64]. 
Here, and in [65-68], some problems in fluctuation hydrodynamics are analyzed. A review of 
results obtained in investigations of fluctuations in dissipative and nonlinear systems in 
states far from equilibrium is given in the monographs [15, 44]. 

Fluctuations play a large role in self-organization processes in nonequilibrium systems, 
in which new dissipative structures can arise with the loss of stability of some state as a 
result of fluctuations. The stability of these new structures can be ensured by sufficiently 
rapid damping of fluctuations. The simplest criteria for determining the boundaries separat- 
ing regions of stability for two different dissipative s~ructures can be established with the 
help of the relaxation formalism [68]. Assuming that Einstein's equation is valid for the 
probabilities of nonequilibrium fluctuations [47] 

W ~ exp (ASIk) (15)  

and using the relaxation equation following from (12) with ~ ~ S to describe the change in 
entropy 

dS AS 
Js = ' (16) 

dt 

it is not difficult to obtain the relation 

from where it follows that the boundary indicated is determined by the condition TI= T2. 
The conditions for the appearance of nuclei of a new phase, the boiling critical point~ the 
critical point of gas glow in a tube, transition of laminar flow into turbulent flow, etc. 
were analyzed with the help of this simple criterion. Thus, for the critical value of the 
Reynolds number describing the onset of turbulent flow of a laminar boundary layer, the theory 
gives approximately 1.15.10 s, which is close to the experimental value 1.2.105. Many of the 
results obtained by applying the theory of random processes to the study of fluctuations are 
reviewed in [69]. 

We shall now discuss the problems:of relaxation hydrodynamics of single-phase and dis- 
persed media. For sufficiently high temperatures, pressures, and velocities, relaxation can 
strongly affect their properties. These effects can be related to incomplete chemical reac- 
tions in a flow, dissociation and ionization processes~ deviations of the molecular and atomic 
distributions from the equilibrium distribution, and the presence of configuration effects in 
structured liquids and polymers. In dispersed media, relaxation processes due to nonequili- 
brium thermal and dynamic action of phases in phase transitions are also important. Extensive 
information on these problems, which have become especially important in recent years in con- 
nection with the demands for intensifying many technological processes, is collected in [70- 
79]. 

The construction of mathematical models Of fluid flows in the presence of relaxation 
phenomena is based on the usual system of equations of conservation of mass, momentum, and 
energy [80]. Following the general method, this system is supplemented by equations of kine- 
tics of relaxation processes (of the type (8) or (12)). In addition, it is assumed that the 
density, pressure, internal energy, and enthalpy of the fluid depend:on the relaxation para- 
meters ~, i.e., generalized equations of state are available in which ~ corer as arguments. 
In the general case, relaxation processes can affect in an analogous manner the tensor of 
viscous stresses and the heat flow [5, 6]. In the most complete form, the concept of inter- 
nal variables relative to hydrodynamics of relaxing media is examined in [81]. This approach 
is used in [81] for the simplest dispersed system: a dilute suspension of nonspherical par- 
ticles. 

Relaxation processes in suspensions, emulsions, gaseous suspensions~ granular layers, 
porous media, and other dispersed systems occur, as a rule, due to the difference in tempera- 
tures and velocities of phases, as well as the presence of interphase mass transfer processes. 
The classification of mixtures when analyzing them using the methods of nonequilibrium thermo- 
dynamics is also based on an examination of the hierarchy of relaxation times [82]: mixtures 
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with strong and weak interaction between components or phases are separated. In so doing, 
mixtures of the first type can be successfully examined as a homogeneous continuous medium~ 
while for mixtures of the second type it is necessary to use models of multivelocity and 
multitemperature interpenetrating continua [74-76]. Very often, especially in developing 
engineering techniques for analyzing processes in dispersed media, equations of hydrodynamics 
for coexisting continua are supplemented by phenomenological equations of hydrodynamic, ther- 
mal, and mass transfer interactions of phases of the same type of Stokes' or Newton's law. 
This makes it necessary to determine the frictional resistance coefficients and the heat and 
mass transfer coefficients independently. It is often convenient, on the other hand, to for- 
mulate these laws in terms of the relaxation formalism of nonequilibrium thermodynamics, whose 
limits of applicability to hydrodynamic problems are studied in [72], which also contains 
typical examples of relaxation processes in fluid flows. 

Rich experience has now been accumulated on solving a wide range of problems of relaxa- 
tion hydrodynamics of single- and multiphase media. The basic directions of the investiga- 
tions can be formulated as follows [70-101]: 

i) relaxing flows in nozzles, channels, and pipes; 

2) relaxing flow around bodieswith different shapes; 

3) propagation of weak perturbations with small and finite amplitude (including sound 
waves) in a relaxing medium; 

4) shock waves and other surfaces of discontinuity in the presence of relaxation pro- 
cesses. 

Many papers are concerned with studying directly the effect of relaxation processes on 
transport of matter, energy, and momentum [102-131]. Diffusion, thermal, and chemical relaxa- 
tion accompanying liquid--vapor phase transitions are examined [102-107]. Dynamic equations 
of state [6, 89, 108, 109], nonequilibrium effects accompanying percolation [110-112], pro- 
blems of describing heat conduction and diffusion with relaxation with the help of different 
generalizations of the usual transport equations, in particular, hyperbolic equations [114- 
131], are also studied. Here we shall consider in greater detail only investigations in which 
the relaxational formalism described above is used in some way. 

The results obtained in relaxational thermodynamics up to 1975, an exact method based on 
numerical integration of equations of gas dynamics and chemical kinetics, and an approximate 
method for solving the problems of flows in =he channels of jet engines, etc. are discussed 
in [70]. The last method is actually based on the scheme examined for separating fast and 
slow variables: up to some section of the channel, the flow is assumed to be an equilibrium 
or almost an equilibrium flow, and then it is assumed that the external (from the side of the 
channel) actions vary so rapidly that the relaxation processes appear to be frozen (~ = const). 
In [73], based on an analysis of the spectra of relaxation times, a criterion is proposed for 
determining the "stagnation point" of the flow and specific calculations are performed for 
chemical, vibrational, and rotational relaxation processes. In [71], numerical methods for 
integrating the equations of relaxational gas-dynamics are examined in detail, and a general 
scheme is discussed for describing relaxation processes and finding relaxation times. In 
addition, the relaxation formalism is used in this paper to describe phase transitions in 
rarefied dispersed flows in turbine machines. 

Recently, many important problems of relaxational gas- and hydrodynamics were discussed 
at the sixth All-Union Conference on Rarefied Gas Dynamics (Novosibirsk, 1979). Supersonic 
flow past bodies, shock waves, flow in channels in the presence of relaxation, and other re- 
laxational phenomena were examined, as well as problems of using the apparatus of kinetic 
theory of gases for constructing a complete system of equations of relaxational gas dynamics 
[83]. 

The propagation of perturbations in two-phase media is investigated in [84-99]. Thermal 
and hydrodynamic interaction of phases in gaseous suspensions containing solid particles [86- 
88, 96-99] as well as phase transitions in mixtures containing evaporating drops [84, 89-92, 
95] are most often examined at the phenomenological level by introducing appropriate relaxa- 
tion times. In addition, either dynamic or thermal relaxation is neglected to make it pos- 
sible to use either a single-velocity or single-temperature model of two-phase mixtures [91, 
98, 99]. It should be noted that the use of quasistationary relations to describe interphase 
interactions leads to considerable errors for high-frequency perturbations. To eliminate 
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these disadvantages, it is necessary to solve special nons=ationary problems of interphase 
exchange, which greatly complicates =he analysis. The problem of obtaining a single evolu- 
tionary equation for waves with small, but finite amplitude has been studied in recent years 
[74, 90,96, 98, 99]. Nonlinear waves in gas--liquid mixtures were also studied in [92] and, 
in addition, interphase mass transfer was examined in a relaxation approximation. Transport 
processes on the interface between two immiscible media, taking into account relaxation ef- 
fects, were studied in [104] using linear thermodynamics. In particular, it was demons=rated 
that their presence narrows the possible relations between the thermodynamic forces and flows, 
which decreases the number of boundary conditions. The relaxation formalism is used in [108] 
to derive a dynamic equation describing adiabatic compression of gas with solid particles. 
This equation gives the adiabat for compression of a pure gas for rapid processes and the 
adiabat for compression of an equilibrium mixture for slow processes. 

Equation (8) for the generalized susoeptibility permits introducing the operator repre- 
sentation for thermodynamic functions of nonequilibrium states in the relaxation approxima- 
tion [45]. In ~his manner it is possible to determine the index of the adiabat N, effective 
heat capacity of the process Cz, velocity of sound a, etc. We have 

= n (~ )  + l + "rv D t ' Cz = + I + Tr  D~ ' 

a~ = ~--P =(a(=>? + (a(~ (a(=~)2 , (18) 
P t -5 "Cv Dt 

where TV, T T are relaxation times for constant volume and temperature, respectively; p, p are 
the pressure and density, while the indices (~) and (0) indicate instantaneous and equilibrium 
change of state. 

If the operator D t is replaced in the expression for ~2 by its eigenvalue, then a rela- 
tion is obtained which was first derived by Meixner in the theory of acoustic relaxation [6]. 
In [96], the two-phase medium was examined as a system with N internal relaxation processes. 
In this case, the square of the velocity of sound is expressed as follows: ~a? -- a? 

~--I 2 

a2 = (a(~>)z % t @ o)zT~ ' (19)  
i 

where ai_ :, a i are =he velocities of sound in the case when i -- i or i relaxation processes 
are frozen. Specific calculations of the velocity of sound were performed for a vapor-drop 
system taking into account rapid relaxation and relaxation of the temperature of the vapor 
and of =he drop to the saturation temperature. Analogous calculations were performed for sys- 
tems of bubbles in liquids. 

The operator form of the equation of the adiabatic process with index n from (18) or 
equations for change of volume with deformation, in which the presence of relaxation is ac- 
counted for with the help of the operator of the volume modulus of elasticity ~, introduced 
in analogy =o [108], permits writing the dynamic equation of compression in the following 
form: 

+ dt--T + = 0 (2o) 

At constant volume, this equation describes relaxation of pressure: 

( ' )  p ( i ) - - P f i n  :exp - - ~ - v  ' (21)  

Pin --Pfin 

This relation is confirmed by experimental data on pressure working of multiphase mixtures 
and oil [109]. 

The results of investigations of the effect of relaxation on percolation of viscoelastic 
polymer media and oil are presented in [110, IIi]. The theoretical investigation of percola- 
tion with relaxation is based on the assumption that the perme~ility &e relaxes according ~o 
a law of the type (12). A theory of percolation, based:on ~he relaxation formalism of non-- 
equilibrium thermodynamics, was proposed in [112]. Using an operator representation of the 
type (8) for quantities inversely proportional to the permeability, the dynamic form of Darcy~s 
law can be written as follows: 
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- -  vp = kTflJ, 
where J. is the velocity of percolation and VP is the pressure gradient. 
for ~$i we obtain from (22) 

( ~ - - ~ )  .~. t I*~ e x p [ ~ '  J + S "~--'f -- t - -  u J J (u) - - V P =  a - - .  -~/ �9 o 

(22) 

Using the expression 

(23) 

where a and ~i are phenomenological coefficients. If =here is only one relaxation process, 
then it is easy to obtain from (23) the equation proposed in [Iii]. 

The possibility of including relaxation in transport of momentum and energy in viscoelas- 
tic media was first proposed by Maxwell [114]. Later, such ideas were examined for the pro- 
cess of heat conduction with finite velocity [115-117]. 

If we introducethe generalized Fourier law 

q(t) -~ - -  ~o(O)vT(t--O)dO, (24) 
o 

and define, in analogy to [114, i15], the function X 0 ( 0 )  in the form 

~ o ( O ) = - - ~ e x p ( - - + ) ,  (25) 

then we obtain the following expression from (24) and (25) for the heat flux density, taking 
into account the finiteness of the velocity of propagation of heat: 

q ~-- - :  %,vT __ '~--O , (26) 
Ot 

where I is the usual coefficient of thermal conductivity. 

A method is proposed in [118] for determining the relaxation time of the heat flux and 
the functions describing the relaxation of this flow and of the internal energy for media with 
thermal memory. 

The equation of heat transfer in a substance for which the law (26) is valid is a hyper- 
bolic equation: 

aT 02T 
0[- + T ~z = av2T" (27) 

Using instead of (26) the more general law (24) leads to an integrodifferential heat-conduc- 
tion equation [117]. 

In [119], the effect of relaxation on heat transport is included with the help of linear 
phenomenological relations 

-$=_ v r -  ]% = v r -  ]E Lj . (28) 
T 2 T 2 �9 i k 

For a single relaxation process, it follows from here tha~: Eq. (26) 

~q "+ pLqq vT  (LILqq--L$1) vT" 
p - 7  + L~q = T - T 2 

is replaced by 

(29) 

This expression leads to a third-order differential equation of heat conduction: 

p 02T OT Lqq 0 L1Pqq-- Lql (30) 
L10t z + - ~  = ,  TZL1 Ot q- L,pT 2 vZT" 

If the internal variable ~ changes sign under time reversal, then Onsager's relations 
in (28) must be replaced by the corresponding Casimir relations, i.e., the sign of the first 
Eerm on the right side of the equation for 0~i must be changed. This changes the sign in 
front of L~ in (29) and for L~ = 0 (29) transforms into (26) and, in addition (30), in this 
case, chan~s into the hyperbolic equation (27). If ~ is even, then Lqq = 0 only under the 
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condition that L . = 0 or ?T = 0, since o~herwise the requirement that the entropy-generating q, 
function be positive-definite is not satisfied. It is thus evident that only odd internal re- 
laxation variables can be responsible for the finite velocity of propagation of heat. Two- 
and multitemperature systems are also examined in [I19], and higher-order heat-conduction 
equations in solids with relaxation are obtained in [120]. 

If the heat capacity is represented in the form (18) when formulating the equation for 
conversation of heat in a relaxing or nonequilibrium dispersed medium, then we obtain the 
generalized heat-conduction equation [45] 

. . . . . .  ( 0! ozr c~) '~r+C~) 'OT = ~  I + X T - - ~  v2T. (31)  
Ot 2 Ot 

An analogous heat-conduction equation in a granular medium, but with different coeffic- 
ients, was obtained in [121]. The derivation was based on a special representation of the 
temperature fields in the continuous phase and in particles. It was shown in [122] that Eq. 
(31) can in principle be used to model heat conduction in biological tissues, in particular, 
in a contracting muscle. It was proposed in [123] that (27) be used for fluidized bed. 

If the operator (i + ZTDt) -I in the expression for the heat capacity (18) is expanded 
in a series in powers of TTDt, then we obtain an equation containing an infinite chain of 
increasingly higher-order time derivatives of the temperature [124]. In the linear approxi- 
mation with respect to TTDt, this equation is a second-order eouatio9 and it is hyperbolic 
or elliptic depending on the ratio of the heat capacities c ~) /c o) . In dispersed media, 

the first approximation usually leads to an elliptic equation [124, 125]. 

Operator representations based on (8) were introduced in [126] for the chemical potential 
and coefficient of diffusion 

D (o) _ D ( ~ ) 
b = D (| -{ 1 + "rDt (32)  

From here it is easy to obtain a general equation of diffusion in a form analogous to the 
form of Eq. (31), Replacing D t in (32) by the eigenva!ues ie and separating the real and ima- 
ginary parts, a dispersion relation is obtained for the diffusion coefficient. This was done 
for a fluidized bed in [127]. A hyperbolic diffusion equation was obtained in [128-130] us- 
ing different methods. It was applied in [131] to modeling of transport of calcium ions in 
heat muscle. 
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